GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Engineering - SEMESTER-I • EXAMINATION - WINTER 2013 Subject Code: 3300001 Date: 17-12-2013 **Subject Name: Basic Mathematics** Time: 02:30 pm - 05:00 pm **Total Marks: 70 Instructions:** 1. Attempt ALL questions. 2. Make Suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. Use of SIMPLE CALCULATOR is permissible. (Scientific/Higher Version not allowed) 5. English version is authentic. Q.1 Fill in the blanks using appropriate choice from the given options. 14 $\log_b a \times \log_a b = \dots$ 1 (i) 0 (ii) 1 (iii) $\log_a ab$ (iv) $\log_b ab$ *If* $\log_2 x = 5$ *then* $x = \dots \dots \dots$ (i)32 (ii)25 (iii) $\frac{2}{5}$ (iv) $\frac{5}{2}$ 2 $1024^{\log_2 m}$ (i)10^m (ii) m¹⁰ (iii)2¹⁰ (iv) 10² 3 If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $\operatorname{adj} A = \dots$ 4 $(\mathbf{i})\begin{bmatrix} d & b \\ c & a \end{bmatrix} (\mathbf{i}\mathbf{i})\begin{bmatrix} a & c \\ b & d \end{bmatrix} (\mathbf{i}\mathbf{i}\mathbf{i})\begin{bmatrix} d & -b \\ -c & a \end{bmatrix} (\mathbf{i}\mathbf{i}\mathbf{i})\begin{bmatrix} -a & c \\ b & -d \end{bmatrix}$ If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ then $A^T = \dots$ (i) $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ (ii) $\begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix}$ (iii) $\begin{bmatrix} -1 & 3 \\ 2 & -4 \end{bmatrix}$ (iv) $\begin{bmatrix} -1 & -2 \\ -3 & -4 \end{bmatrix}$ 5 6 If $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ then cofactor of $5 = \dots$ (i)-12 (ii) 12 (iii)-3 (iv) 3 If $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then $A^2 = \dots$ (i) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (ii) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ (iii) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (iv) $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 7 Sin120⁰ = (i) $\frac{2}{\sqrt{3}}$ (ii) $\frac{1}{2}$ (iii) $\frac{\sqrt{3}}{2}$ (iv) $\sqrt{3}$ 8 $\tan^{-1}(\sqrt{3}) = \dots$ (i)30[°] (ii) 45[°] (iii)60[°] (jv) 120[°] 9 **10** Period of $Sin(2x + 3) = \dots$ $(i)\frac{2\pi}{2}$ (ii) 2π (iii) π (iii) $\frac{\pi}{2}$

	11	$ sin(A + B) sin(A - B) = \dots (i)sin2A - cos2B (ii) sin2A - sin2B (iii)cos2A - cos2B (iv)cos2A - sin2B $	
	12	Area of a square is 100 sq-cm. Perimeter of square = (i)10cm (ii)20cm (iii)40cm (iv)60cm	
	13	Circumference of a circle is 10π cm. Radius of a circle = (i)5cm (ii)25cm (iii)10cm (iv)100cm	
	14	Volume of sphere having radius $r = \dots$ (i) $\frac{4}{3}\pi r^2$ (ii) $\frac{4}{3}\pi r^3$ (iii) $\frac{3}{4}\pi r^3$ (iv) $4\pi r^2$	
Q.2	1.	Attempt any two If $\log\left(\frac{a+b}{2}\right) = \frac{1}{2}(\log a + \log b)$ then prove that $a = b$	06
	2.	If the circumference of a circle is equal to the area of a circle, find the radius Of a circle.	
	3. (b)	The surface area of a sphere is 616 sq-cm, find the diameter of the sphere. Attempt any two	08
	1.	Prove that $\frac{1}{\log_x(yz)+1} + \frac{1}{\log_y(zx)+1} + \frac{1}{\log_z(xy)+1} = 1$	
	2. 3.	Solve: $\log x + \log(x-5) = \log 6$ If the surface area of a spherical ball is 1256 sq-cm, find the volume of the sphere	
Q.3	(a) 1.	Attempt any two If $A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 3 & 4 \\ 2 & 1 \end{bmatrix}$, then find $(AB)^T$	06
		If $A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \\ 2 & 5 \end{bmatrix}$, $B = \begin{bmatrix} -1 & -2 \\ 0 & 5 \\ 3 & 1 \end{bmatrix}$, then find 3A-2B	
	3.	Evaluate : $\begin{bmatrix} 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 3 \\ 3 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$	
	(b) 1.	Attempt any two $[1, -1]$ $[3, 1]$ $[3, 1]$	08
	2.	If $A+B = \begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix}$, $A-B = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$, then find $(AB)^{-1}$ Solve : $2x-3y = -5$, $3x + 5y = 9$ using matrices	
	3.	If $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ then find A^2	
Q.4	(a) 1.		06
	2.	Prove that $\frac{\sin(\pi+\theta)}{\sin(2\pi-\theta)} + \frac{\tan(\frac{\pi}{2}+\theta)}{\cot(\pi-\theta)} + \frac{\cos(2\pi+\theta)}{\sin[\frac{\pi}{2}+\theta]} = 3$ Prove that $\tan 20^{\circ} + \tan 25^{\circ} + \tan 20^{\circ} \tan 25^{\circ} = 1$	
	2. 3.	Prove that $\sin 20^{-1}x + \cos^{-1}x = \frac{\pi}{2}$	
	(b) 1.	Attempt any two Draw the graph of $y = \cos x$, $0 \le x \le \pi$	08
	2.	If $\tan \theta = \frac{1}{2}$ then find $7\cos 2\theta + 8\sin 2\theta$	
	3.	Prove that $\frac{1 + \sin \theta - \cos \theta}{1 + \sin \theta + \cos \theta} = \tan \frac{\theta}{2}$	

2/5

0.5 (a) Attempt any two 1. If a = (3 - 1 - 4), b = (-2 - 4 - 3), c = (1 - 2 - 4)Find |3a-2b+4c|If x = (1 - 2 - 3), y = (-2 - 3 - 1) then find (x + y). (x - y)2. Find x if a = (2 - 3 - 5) and b = (x - 6 - 8) are perpendicular 3. To each other (b) Attempt any two 08 Find a unit vector perpendicular to both a = (1 - 1 1) and 1. $b = (2 \ 3 \ -1)$ Prove that the angle subtended between $(1 \ 1 \ -1)$ and $(2 \ -2 \ 1)$ is 2. $Sin^{-1}\left(\sqrt{\frac{26}{27}}\right)$ The constant forces (1 2 3) and (3 1 1) act on a particle. Under the 3. action of these forces particle moves to the point $(5 \ 1 \ 2)$ from the point $(0 \ 1 \ -2)$. Find the total work done ********** Q.1 સાચો વિકલ્પ પસંદ કરી ખાલી જગ્યા પુરો. 14 1 $\Re \log_2 x = 5$ to $\Re x = \dots \dots \dots$ (i)32 (ii)25 (iii) $\frac{2}{5}$ (iv) $\frac{5}{2}$ 2 $\begin{array}{c} 1024^{\log_2 m} \\ (i)10^m \ (ii) \ m^{10} \ (iii)2^{10} \ (iv) \ 10^2 \end{array}$ 3 4 $\Re A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ ch adj $A = \dots$ (i) $\begin{bmatrix} d & b \\ c & a \end{bmatrix}$ (ii) $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$ (iii) $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ (iii) $\begin{bmatrix} -a & c \\ b & -d \end{bmatrix}$ 5 $\Re A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ ch $A^{T} = \dots$ $(i)\begin{bmatrix}1&3\\2&4\end{bmatrix}(ii)\begin{bmatrix}1&-3\\-2&4\end{bmatrix}(iii)\begin{bmatrix}-1&3\\2&-4\end{bmatrix}(iv)\begin{bmatrix}-1&-2\\-3&-4\end{bmatrix}$ 6 જો A= $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ તો 5 નો સહઅવયવ = (i)-12 (ii) 12 (iii)-3 (iv) 3 7 $\Re A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ to $A^2 = \dots$ $(i)\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} (ii)\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} (iii)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (iv)\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $Sin120^{0} = ...$ 8 $(i)\frac{2}{\sqrt{2}}$ $(ii)\frac{1}{2}(iii)\frac{\sqrt{3}}{2}$ $(iv)\sqrt{3}$ $\tan^{-1}(\sqrt{3}) = \dots$ (i)30[°] (ii) 45[°] (iii)60[°] (jv) 120[°] 9

$$\begin{array}{ll} 10 & \sin(2x+3) \ e j \ u(\alpha (\lambda u e 1 = \dots (i))) \\ \frac{2\pi}{3}^{2\pi} & (ii) \ 2\pi (iii) \ \pi (iii)) \\ \frac{2\pi}{3}^{2\pi} & (ii) \ 2\pi (iii) \ \pi (iii)) \\ \frac{2\pi}{3}^{2\pi} & (ii) \ 2\pi (iii) \ \pi (iii) \\ \frac{2\pi}{3}^{2\pi} & (ii) \ 2\pi (iii) \ 2\pi (ii) \ 2\pi (iii) \ 2\pi (ii) \$$

4/5

Q.4	(a)	કોઇપણ બે ગણૉ	06
	1.	$\operatorname{\mathfrak{All}}(\operatorname{\mathfrak{GC}}\mathfrak{SS}) \frac{\sin(\pi+\theta)}{\sin(2\pi-\theta)} + \frac{\tan\left(\frac{\pi}{2}+\theta\right)}{\cot(\pi-\theta)} + \frac{\cos(2\pi+\theta)}{\sin\left[\frac{\pi}{2}+\theta\right]} = 3$	
	2.	સાબિત કરોકે tan 20° + tan 25° + tan 20° tan 25° = 1	
	3.	સાબિત કરીકે $Sin^{-1}x + Cos^{-1}x = \frac{\pi}{2}$	
	(b)	કોઇપણ બે ગણો	08
	1.	$y = \cos x$, $0 \le x \le \pi$ नी ग्राइ होरी	
	2.	જો $\tan \theta = \frac{1}{2}$ તો $7 \cos 2\theta + 8 \sin 2\theta$ મેળ્વો	
	3.	$\operatorname{HI}(\Theta_{T} \otimes \operatorname{RI}) \frac{1 + \sin \theta - \cos \theta}{1 + \sin \theta + \cos \theta} = \tan \frac{\theta}{2}$	
Q.5	(a)	કોઇપણ બે ગણૉ	06
	1.	$\delta a = (3 - 1 - 4), b = (-2 - 4 - 3), c = (1 - 2 - 1) c l 3a - 4 $	
		2 <i>b</i> + 4 <i>c</i> મેળવો	
	2.	જૉ $x = (1 -2 3), y = (-2 3 1)$ તો $(x + y).(x - y)$ મેળવો	
	3.	જો $a = (2 -3 5)$ and $b = (x -6 -8)$ પરસ્પર લંબ હોય તો x	
		મેળવો	
	(b)	કોઇપણ બે ગણૉ	08
	1.	a = (1 −1 1) અને b=(2 3 −1) ને લંબ આવેલો એકમ સદિશ મેળવો	
	2.	સાબિત કરોકે સદિશો (1 1 −1) અને (2 −2 1) અંતરાઘેલો ખુણો	
		$Sin^{-1}\left(\sqrt{\frac{26}{27}}\right)$ \mathfrak{D} .	
	3.	એક કણ ઉપર અચળ બળો (1 2 3) અને (3 1 1) કાર્યકરે છે. આ બળોની	
		અસર હેથળ તે કણ બિંદુ (0 1 −2) થી ખસીને બીજા બિંદુ (5 1 2) આગળ	
		આવે છે. કુલ કાર્ય શોધો.	

Г